KORELASI REGRESI – Penjelasan dan Tutorial – Lengkap

18
1417
Korelasi
Korelasi

KORELASI

Korelasi adalah teknik statistik yang digunakan untuk meguji ada/tidaknya hubungan serta arah hubungan dari dua variabel atau lebih.

Yang akan dibahas dalam pelatihan ini adalah :

1. Korelasi sederhana pearson & spearman
2. Korelasi partial
3. Korelasi ganda.

KOEFISIEN KORELASI

Besar kecilnya hubungan antara dua variabel dinyatakan dalam bilangan yang disebut Koefisien Korelasi:

a. Besarnya Koefisien antara   -1   0  +1
b. Besaran koefisien -1 & 1 adalah hubungan yang sempurna
c. Nilai Koefisien 0 atau mendekati 0 dianggap tidak berhubungan antara dua variabel yang diuji

ARAH HUBUNGAN

a. Positif (Koefisien 0 s/d 1)
b. Negatif (Koefisien 0 s/d -1)
c. Nihil (Koefisien 0).

PEARSON CORRELATION

Digunakan untuk data interval & rasio
Distribusi data normal
Terdiri dari dua variabel
1 Variabel X (Independen)
1 Variabel Y (dependen)

CONTOH

Judul: Hubungan antara intensitas belajar dengan prestasi mata kuliah statistik

Variabel X : Intensitas belajar (diukur dari lamanya belajar dalam satu minggu)
Variabel Y : Prestasi matakuliah statistik (diukur dari nilai ujian akhir semester)

Hipotesa:

H0: Tidak ada hubungan antara Intenitas belajar dengan prestasi mata kuliah statistik
Ha: Ada hubungan antara Intenitas belajar dengan prestasi mata kuliah statistik

INPUT DATA KE SPSS

Input Data ke SPSS
Input Data ke SPSS

SPSS

Ada dua view dalam SPSS

a. Data View : digunakan untuk memasukkan data yang akan dianalisis
b. Variabel View : digunakan untuk memberi nama variabel dan pemberian koding.

UJI NORMALITAS

Uji Normalitas SPSS
Uji Normalitas SPSS
Normalitas Plot SPSS
Normalitas Plot SPSS

INTERPRESTASI NORMALITAS

TAHAP ANALISIS

INTERPRESTASI

Untuk pengambilan keputusan statistik, dapat digunakan 2 cara:

1. Koefisien Korelasi dibandingkan dengan nilai r tabel (korelasi tabel)

Apabila Koefisien Korelasi > r tabel, Maka ada hubungan yang signifikan (Ha Diterima),

Apabila Koefisien Korelasi < r tabel, Maka tidak ada hubungan yang signifikan (H0 Diterima).

2. Melihat Sig.

    Apabila nilai Sig. < 0,05 Maka ada hubungan yang signifikan (Ha Diterima)
    Apabila nilai Sig. > 0,05 Maka tidak ada hubungan yang signifikan (H0 Diterima)

Arah hubungan:

Dilihat dari tanda koefisien:

   Tanda (-) berarti apabila variabel X tinggi maka variabel Y rendah
   Tanda (+) berarti apabila variabel X tinggi maka variabel Y juga tinggi

SPEARMAN

a. Digunakan untuk jenis data ordinal
b. Cara analisis dan interpretasi sama dengan Pearson.
c. Perbedaan hanya pada waktu memilih box yang diaktifkan adalah box spearman.

KORELASI PARTIAL

Korelasi yang digunakan untuk menguji hubungan dua atau lebih variabel independen dengan satu variabel dependen dan dilakukan pengendalian pada salah satu variabel independennya

CONTOH

Judul: Hubungan antara biaya promosi dan penjualan dengan mengendalikan jumlah outlet

Variabel X1: Biaya Promosi
Variabel X2: Jumlah outlet (dikendalikan)
Variabel Y: Penjualan

Hipotesa:

H0: Tidak ada hubungan antara biaya promosi dengan penjualan apabila jumlah outlet dikendalikan
Ha: Ada hubungan antara biaya promosi dengan penjualan apabila jumlah outlet dikendalikan

CONTOH

Buka data : Korelasi ganda dan partial.sav Data

ANALISIS

KORELASI PARTIAL

OUTPUT PARTIAL

KORELASI GANDA

Koefisien yang digunakan untuk menguji hubungan dua atau lebih variabel independen dengan satu variabel dependen secara bersamaan.

CONTOH

Judul: Hubungan antara biaya promosi dan jumlah outlet dengan penjualan

  Variabel X1: Biaya Promosi
  Variabel X2: Jumlah outlet
  Variabel Y: Penjualan

Hipotesa:

  H0: Tidak ada hubungan antara biaya promosi dan jumlah outlet dengan penjualan
  Ha: Ada hubungan antara biaya promosi dan jumlah outlet dengan penjualan

CONTOH

  Buka data : Korelasi ganda dan partial.sav Data

KORELASI GANDA

INTERPRETASI KORELASI GANDA

a. Untuk menginterpretasi korelatif ganda lihat nilai R, semakin mendekati 1 maka hubungan semakin kuat
b. Guna memperkaya analisis, sebelum dianalisis korelasi ganda dapat juga ditambahkan analisis korelasi pada masing-masing variabel independen dengan variabel dependen (caranya sama dengan analisis korelasi pearson).

REGRESI

a. Analisis regresi adalah analisis lanjutan dari korelasi
b. Menguji sejauh mana pengaruh variabel independen terhadap variabel dependen setelah diketahui ada hubungan antara variabel tersebut
c. Data harus interval/rasio
d. Data Berdistribusi normal.

Yang akan dibahas dalam pelatihan ini adalah:

a. Regresi sederhana: yaitu regresi untuk 1 variabel independen dengan 1 variabel dependen
b. Regresi ganda: yaitu regresi untuk lebih dari satu variabel independen dengan 1 variabel dependen.

REGRESI SEDERHANA

Buka data : Pearson.sav Data

INTERPRETASI REGRESI SEDERHANA

Output 1

Lihat nilai R = 0,843 ini berarti bahwa kekuatan hubungan antara variabel X dengan Y adalah 0,843

INTERPRETASI REGRESI SEDERHANA

OTPUT 2

  • Untuk melihat signifikansi persamaan regresi dapat dilihat dari nilai F = 81,329 dan dibandingkan dengan F tabel
  • Apabila nilai F < F tabelmaka persamaan garis regresi tidak dapat digunakan untuk prediksi
  • Apabila nilai F > F tabelmaka persamaan garis regresi dapat digunakan untuk prediksi
  • Selain itu dapat pula dengan melihat nilai Sig. dapat digunakan untuk prediksi apabila nilai Sig. < 0,05

INTERPRETASI REGRESI SEDERHANA

OUTPUT 3

  • Untuk membuat persamaan garis regresi dapat dilihat dari kolom B.
  • Constan = 38,481 dan intensitas belajar= 2,978
  • Berarti persamaan garisnya adalah: Y=38,481 + 2,978 X.

REGRESI BERGANDA

  • Digunakan untuk analisis regresi dengan jumlah variabel independen lebih dari satu dengan satu variabel dependen
  • Ada tambahan asumsi yang harus dipenuhi, yaitu tidak boleh ada hubungan antar variabel-variabel independennya (uji multikolinearitas).

CONTOH

Buka data : Korelasi ganda dan partial.sav

INTERPRETASI REGRESI GANDA

Output 1

Lihat nilai R = 0,976 ini berarti bahwa kekuatan hubungan antara variabel X1dan X2 secara bersamaan dengan Y adalah 0,976.

INTERPRETASI REGRESI GANDA

Output 2

Untuk melihat signifikansi persamaan regresi dapat dilihat dari nilai F = 118,294 dan dibandingkan dengan Tabel F: F Tabel dalam Excel

  • Apabila nilai F < F tabelmaka persamaan garis regresi tidak dapat digunakan untuk prediksi
  • Apabila nilai F > F tabelmaka persamaan garis regresi dapat digunakan untuk prediksi
  • Selain itu dapat pula dengan melihat nilai Sig. dapat digunakan untuk prediksi apabila nilai Sig. < 0,05

INTERPRETASI REGRESI GANDA

Output 3

Untuk membuat persamaan garis regresi dapat dilihat dari kolom B.

  • Constan = 64,639
  • Biaya promosi= 2,342
  • Jumlah Outlet= 0,535
  • Berarti persamaan garisnya adalah: Y=64,639 + 2,342 biaya promosi + 0,535 Jumlah Outlet

INTERPRETASI REGRESI GANDA

Output 4

Identifikasi kolinieritas dapat dilakukan dengan melihat:

  • Output 3, Kolom VIF. : terjadi kolinearitas apabila nilai VIF > 5
  • Output 4, Kolom eugenvalue: terjadi kolinearitas apabila nilai eugenvalue mendekati 0
  • Output 4, Kolom condition index: terjadi kolinearitas apabila nilai condition index > 15. Dikatakan parah apabila > 30

By Anwar Hidayat

TINJAUAN IKHTISAR
Penting
BAGIKAN
Berita sebelumyaRegresi Linear Sederhana dengan SPSS
Berita berikutnyaPengertian Analisis Regresi Korelasi Dan Cara Hitung

18 KOMENTAR

  1. Tergantung pada skala data tiap variabel. Anda telusuri pada artikel saya di blog ini tentang regresi linear, regresi logistik, anova, ancova, manova, mancova, dll.

  2. saya mau tanya.apabila judul skripsi saya hubungan antara kedalaman laut dan panjang jaring terhadap jumlah hasil tangkapan udang.sebaiknya saya menggunakan uji statistik apa?terima kasih

  3. Mau tanya pak skripsi saya mencari hubungan antar 2 varibel, untuk kedua variabel menggunakan dikotomi semua dengan skor pernyataan ya =1, tidak = 0. Untuk analisis dapat menggunakan uji statistik apa? Trims

  4. Tidak bisa, syarat uji pearson adalah skala data interval atau rasio. Sebaiknya anda menggunakan uji spearman, kendall tau, gamma atau somer's. Baca artikel saya tentang hal itu.

  5. Jika bentuk hipotesisnya adalah asosiatif, maka gunakan analisis untuk derajat yang terendah. Bila Nominal Vs Ordinal, maka gunakan analisis asositaif untuk data nominal, misalnya uji koefisien kontingensi.

Cobalah Menjadi Pandai! Berikan Komentarnya Ya......