Penjelasan Metode Analisis Regresi Data Panel

Regresi Data Panel Analisis regresi data panel adalah analisis regresi dengan struktur data yang merupakan data panel. Umumnya pendugaan parameter…

Regresi Data Panel

Analisis regresi data panel adalah analisis regresi dengan struktur data yang merupakan data panel. Umumnya pendugaan parameter dalam analisis regresi dengan data cross section dilakukan menggunakan pendugaan metode kuadrat terkecil atau disebut Ordinary Least Square (OLS).

Pengertian Regresi Data Panel

Regresi Data Panel adalah gabungan antara data cross section dan data time series, dimana unit cross section yang sama diukur pada waktu yang berbeda. Maka dengan kata lain, data panel merupakan data dari beberapa individu sama yang diamati dalam kurun waktu tertentu. Jika kita memiliki T periode waktu (t = 1,2,…,T) dan N jumlah individu (i = 1,2,…,N), maka dengan data panel kita akan memiliki total unit observasi sebanyak NT. Jika jumlah unit waktu sama untuk setiap individu, maka data disebut balanced panel. Jika sebaliknya, yakni jumlah unit waktu berbeda untuk setiap individu, maka disebut unbalanced panel.

Sedangkan jenis data yang lain, yaitu: data time-series dan data cross-section. Pada data time series, satu atau lebih variabel akan diamati pada satu unit observasi dalam kurun waktu tertentu. Sedangkan data cross-section merupakan amatan dari beberapa unit observasi dalam satu titik waktu.

Persamaan Regresi Data Panel

Persamaan Regresi data panel ada 2 macam , yaitu One Way Model dan Two Way Model.

One Way Model adalah model satu arah, karena hanya mempertimbangkan efek individu (αi) dalam model. Berikut Persamaannya:

Model One Way Data Panel

Dimana:

α       = Konstanta

β       = Vektor berukuran P x 1 merupakan parameter hasil estimasi

Xit    = Observasi ke-it dari P variabel bebas

αi      = efek individu yang berbeda-beda untuk setiap individu ke-i

Eit     = error regresi seperti halnya pada model regresi klasik.

Model Data Panel

Two Way Model adalah model yang mempertimbangkan efek dari waktu atau memasukkan variabel waktu. Berikut Persamaannya:

Model Two Way Data Panel

Persamaan di atas menunjukkan dimana terdapat tambahan efek waktu yang dilambangkan dengan deltha yang dapat bersifat tetap ataupun bersifat acak antar tahunnya.

Asumsi Regresi Data Panel

Metode Regresi Data Panel akan memberikan hasil pendugaan yang bersifat Best Linear Unbiased Estimation (BLUE) jika semua asumsi Gauss Markov terpenuhi diantaranya adalah non-autcorrelation.

Non-autocorrelation inilah yang sulit terpenuhi pada saat kita melakukan analisis pada data panel. Sehingga pendugaan parameter tidak lagi bersifat BLUE. Jika data panel dianalisis dengan pendekatan model-model time series seperti fungsi transfer, maka ada informasi keragaman dari unit cross section yang diabaikan dalam pemodelan. Salah satu keuntungan dari analisis regresi data panel adalah mempertimbangkan keragamaan yang terjadi dalam unit cross section.

Keuntungan Regresi Data Panel

Keuntungan melakukan regresi data panel, antara lain:

  1. Pertama, dapat memberikan peneliti jumlah pengamatan yang besar, meningkatkan degree of freedom (derajat kebebasan), data memiliki variabilitas yang besar dan mengurangi kolinieritas antara variabel penjelas, di mana dapat menghasilkan estimasi ekonometri yang efisien.
  2. Kedua, panel data dapat memberikan informasi lebih banyak yang tidak dapat diberikan hanya oleh data cross section atau time series saja.
  3. Ketiga, panel data dapat memberikan penyelesaian yang lebih baik dalam inferensi perubahan dinamis dibandingkan data cross section.

Tahapan Regresi Data Panel

Tidak seperti regresi biasanya, regresi data panel harus melalui tahapan penentuan model estimasi yang tepat. Berikut diagram tahapan dari regresi data panel:

Tahapan Data Panel

PENENTUAN MODEL ESTIMASI:

Dalam metode estimasi model regresi dengan menggunakan data panel dapat dilakukan melalui tiga pendekatan, antara lain:

Common Effect Model atau Pooled Least Square (PLS)

Merupakan pendekatan model data panel yang paling sederhana karena hanya mengkombinasikan data time series dan cross section. Pada model ini tidak diperhatikan dimensi waktu maupun individu, sehingga diasumsikan bahwa perilaku data perusahaan sama dalam berbagai kurun waktu. Metode ini bisa menggunakan pendekatan Ordinary Least Square (OLS) atau teknik kuadrat terkecil untuk mengestimasi model data panel.

Fixed Effect Model (FE)

Model ini mengasumsikan bahwa perbedaan antar individu dapat diakomodasi dari perbedaan intersepnya. Untuk mengestimasi data panel model Fixed Effects menggunakan teknik variable dummy untuk menangkap perbedaan intersep antar perusahaan, perbedaan intersep bisa terjadi karena perbedaan budaya kerja, manajerial, dan insentif. Namun demikian slopnya sama antar perusahaan. Model estimasi ini sering juga disebut dengan teknik Least Squares Dummy Variable (LSDV).

Random Effect Model (RE)

Model ini akan mengestimasi data panel dimana variabel gangguan  mungkin saling berhubungan antar waktu dan antar individu. Pada model Random Effect perbedaan intersep diakomodasi oleh error terms masing-masing perusahaan. Keuntungan menggunkan model Random Effect yakni menghilangkan heteroskedastisitas. Model ini juga disebut dengan Error Component Model (ECM) atau teknik Generalized Least Square (GLS) .

Penentuan Metode Estimasi Regresi Data Panel

Untuk memilih model yang paling tepat terdapat beberapa pengujian yang dapat dilakukan, antara lain:

Uji Chow

Chow test adalah pengujian untuk menentukan model apakah Common Effect (CE) ataukah Fixed Effect (FE) yang paling tepat digunakan dalam mengestimasi data panel.

Apabila Hasil:

H0: Pilih PLS (CE)

H1: Pilih FE (FE)

Uji Hausman

Hausman test adalah pengujian statistik untuk memilih apakah model Fixed Effect atau Random Effect yang paling tepat digunakan.

Apabila Hasil:

H0: Pilih RE

H1: Pilih FE

Uji Lagrange Multiplier

uji Lagrange Multiplier (LM) adalah uji untuk mengetahui apakah model Random Effect lebih baik daripada metode Common Effect (PLS) digunakan.

Apabila Hasil:

H0: Pilih PLS

H1: Pilih RE

Dari ketiga uji untuk menentukan Metode Estimasi di atas, digambarkan dalam grafik di bawah ini:

Pilihan Estimasi Regresi Data Panel

Pahami betul diagram di atas, karena akan menjadi kunci dalam langkah-langkah pengujian selanjutnya.

Cukup Sampai di sini artikel kami perihal Regresi Data Panel. Untuk memahami kelanjutannya, akan kami bahas di Regresi Data Panel dengan STATA. Selain itu kami juga membahas Tutorial Cara Input data Panel dengan Eviews dan Tutorial Regresi Data Panel dengan Eviews. Terima kasih.

By Anwar Hidayat

This article was last modified on December 26, 2017, 8:13 pm

Anwar Hidayat

Founder dan CEO dari Statistikian Sejak 2012. Melayani jasa bantuan olah dan analisis data menggunakan berbagai aplikasi statistik, seperti: SPSS, STATA, Minitab, Eviews, AMOS dan Excel. Silahkan WhatsApp: 08816050259, atau SMS/LINE/Telegram ke: 081373337354. Biaya 100 ribu sd 300 ribu Sesuai Beban. Proses 1 sd 3 Hari Tergantung Antrian.

View Comments

  • pagi pak...dari artikel di atas yang saya mau tanya, apakah untuk setiap model terpilih uji asumsi klasik yang perle dilakukan tidak sama?

    • Antara random effect dengan common effect atau fixed effect itu berbeda asumsinya.

  • Pak kalau data panel dan sampelnya di atas 500, sehingga sulit utk memenuhi uji normalitas, bagaimana ya pak?
    Terima kasih sebelumnya

  • Assalamualaikum pak anwar selamat pagi, mau tanya untuk uji asumsi klasik dilakukan sebelum penentuan model estimasi atau setelah dilakukan penentuan model estimasi ya pak?
    Terima Kasih Sebelumnya..

  • Apakah ini "Uji Chow : Chow test adalah pengujian untuk menentukan model Fixed Effet atau Random Effect yang paling tepat digunakan dalam mengestimasi data panel" maksudnya memilih CEM atau REM ?

    • Terima kasih atas koreksinya. Sudah saya perbaiki. Yang benar adalah chow test untuk menentukan apakah model yang terbaik common effects ataukah fixed effects. Jika terima H1 maka memilih FE, sedangkan jika terima H0 maka memilih CE.

  • pak mau bertanya, apabila di uji chow FE di menangkan lalu di uji hausman RE dimenangkan , apakah saya harus melanjutkan uji LM ?

Recent Posts

Pengertian Simple Random Sampling, Jenis dan Contoh

Pengertian Simple Random Sampling, Jenis dan Contoh Pengertian Simple Random Sampling Dalam kesempatan ini akan kami coba sharing tentang pengertian…

3 hari ago

Penjelasan dan Tutorial Regresi Linear Berganda

Penjelasan dan Tutorial Regresi Linear Berganda Dalam kesempatan ini, saya akan coba menjelaskan tentang Regresi Linear Berganda serta tutorial regresi…

2 bulan ago

Cara Hitung Rumus Slovin Besar Sampel

Cara Perhitungan Rumus Slovin Besar Sampel Minimal Pengertian Rumus Slovin Rumus Slovin adalah sebuah rumus atau formula untuk menghitung jumlah…

2 bulan ago

F Tabel Lengkap Beserta Cara Mencari dan Membacanya

F Tabel Lengkap Selamat pagi, siang atau malam wahai semua pengunjung dan pecinta statistikian.com. Dalam kesempatan ini saya akan menjelaskan…

3 bulan ago

Tutorial Uji Regresi Ordinal dengan SPSS

Tutorial Analisis Regresi Ordinal dengan SPSS Berikut dalam artikel kali ini akan kita bahas bagaimana cara melakukan uji regresi ordinal…

6 bulan ago

Contoh Penelitian Bisnis dengan Regresi Linear

Contoh Penelitian Bisnis Menggunakan Uji Regresi Linear Berganda Contoh penelitian bisnis ini adalah salah satu contoh penelitian yang biasa digunakan…

8 bulan ago