Tutorial Cara Hitung Rumus Uji Korelasi Gamma

Rumus Uji Korelasi Gamma Uji Gamma adalah salah satu dari uji Asosiatif Non Parametris. Gamma mengukur hubungan antara 2 variabel…

Rumus Uji Korelasi Gamma

Uji Gamma adalah salah satu dari uji Asosiatif Non Parametris. Gamma mengukur hubungan antara 2 variabel berskala ordinal yang dapat dibentuk ke dalam tabel kontingensi. Uji ini mengukur hubungan yang bersifat symmetris artinya variabel A dan variabel B dapat saling mempengaruhi. Dalam bahasan ini, kami akan sampaikan artikel tentang rumus uji korelasi gamma atau disebut juga dengan istilah rumus koefisien gamma.

Berikut adalah Rumus Uji Korelasi Gamma:

Rumus Uji Korelasi Gamma

Gamma = Concordant-Discordant/Concordant+Discordant.

Kelemahan dari uji Gamma adalah tidak memperhatikan adanya TIES atau bias, yaitu banyaknya pasangan yang bisa dibentuk. Ties kalau diartikan secara mudah adalah banyaknya responden pada peringkat yang sama. Contoh: Peringkat Pengetahuan baik, respondennya ada 23 sampel dan peringkat pengetahuan kurang ada 12 sampel. Itulah yang disebut TIES.

Apabila anda ingin memperhatikan TIES karena data anda banyak TIES, sebaiknya anda pilih uji yang sejenis, yaitu Somer’s D, Kendall tau -b dan Kendall Tau -c.

Lihat Diagram di bawah ini:

Tabel Kontingensi Rumus Koefisien Gamma

Keterangan:

Pasangan Q adalah pasangan discordant karena X1 lebih rendah dari X2 tetapi  Y3 lebih tinggi dari Y2, atau bisa juga dinyatakan X2 lebih tinggi dari X1 tetapi Y2 lebih rendah dari Y3.  Pasangan P adalah pasangan concordant karena X2 lebih rendah X3 dan Y2 lebih rendah dari Y3, atau bisa juga dinyatakan X3 lebih tinggi dari X2 dan Y3 lebih tinggi dari Y2.

Jadi bisa dikatakan pasangan concordant menunjukkan perubahan ranking pada variabel X searah dengan perubahan ranking pada Variabel Y, sedangkan pasangan discordant menunjukkan perubahan ranking pada variabel X  tidak searah dengan perubahan ranking pada Variabel Y.  Banyaknya pasangan searah (concordant) dan tidak serarah (discordant) itulah yang menjadi dasar perhitungan statistik Gamma.

Pasangan Tx dan Ty tidak akan digunakan pada uji Gamma (Pada Tau -b dan Somer’s D).

Tutorial Contoh Perhitungan Rumus Korelasi Gamma

Berikut Contoh perhitungan Uji Gamma:

Tabel Rumus Koefisien Gamma

Tabel Rumus Koefisien Gamma

Cara hitung P dan Q:

Pada Gambar tabel-tabel di atas, lihat warna merah dan hijau. Cara menghitung P adalah mengkalikan Cell dimulai dari kanan atas (warna merah) dengan jumlah cell-cell di kiri bawahnya (warna hijau). Cara menghitung Q adalah mengkalikan Cell di mulai dari kiri atas (warna merah) dengan jumlah cell-cell di kanan bawahnya (warna hijau):

Contoh di atas pada jumlah sampel N=33.

P1: 2(6+1+0+4+0+7)=36.

P2: 2(1+4+7)=24

P3: 8(0+4+0+7)=88

P4: 6(4+7)=66

P5: 1(0+7)=7

P6: 0(7)=0

Jadi nilai total P=36+24+88+66+7+0=221

Q1: 0(6+8+0+1+0+2)=0

Q2: 2(8+1+2)=22

Q3: 1(0+1+0+2)=3

Q4: 6(1+2)=18

Q5: 4(0+2)=8

Q6: 0(2)=0

Jadi nilai total Q=51

Gamma=P-Q/P+Q=221-51/221+51=0,625.

Nilai Gamma disebut sebagai koefisien korelasi Gamma, di mana Gamma berkisar antara -1 (hubungan tidak searah sempurna) dan +1 (hubungan searah sempurna).

Hasil uji di atas: 0,625 berarti hubungan kedua variabel sedang.

Tetapi apakah secara statistik, nilai koefisien korelasi tersebut bermakna atau tidak? maka diperlukan uji selanjutnya, yaitu uji signifikansi. Bagaimana caranya? Pada Uji Gamma, dengan mendapatkan nilai z score yang akan dibandingkan dengan z tabel.

Z score pada uji gamma:

Z = Gamma . Akar(P+Q/N.(1-Gamma^2))

Z = 0,625 . Akar(221+51/33.(1-0,625^2))

Z = 2,29861

Cara pengambilan keputusan Rumus Uji Korelasi Gamma:

Apabila -Z Score < -Z Tabel atau +Z Score > +Z Tabel, maka ada hubungan yang siginifikan atau H1 diterima dan H0 Ditolak.

Contoh di atas menunjukkan Z Score 2,29861 pada derajat kepercayaan 95% atau batas kritis 0,05 pada uji 2 sisi (0,025) > Z Tabel +1,96 atau -2,29861 < -1,96, maka berarti ada hubungan yang siginifikan atau H1 diterima dan H0 Ditolak.

Untuk lebih jelasnya, baca artikel tentang z tabel dan interprestasinya: Z Tabel Excel. Demikian artikel kami yang membahas tutorial cara perhitungan rumus uji korelasi gamma. Semoga bermanfaat.

By Anwar Hidayat

This article was last modified on March 14, 2017, 1:16 am

Anwar Hidayat

Founder dan CEO dari Statistikian Sejak 2012. Melayani jasa bantuan olah dan analisis data menggunakan berbagai aplikasi statistik, seperti: SPSS, STATA, Minitab, Eviews, AMOS dan Excel. Silahkan WhatsApp: 08816050259, atau SMS/LINE/Telegram ke: 081373337354. Biaya 100 ribu sd 300 ribu Sesuai Beban. Proses 1 sd 3 Hari Tergantung Antrian.

Recent Posts

Pengertian Simple Random Sampling, Jenis dan Contoh

Pengertian Simple Random Sampling, Jenis dan Contoh Pengertian Simple Random Sampling Dalam kesempatan ini akan kami coba sharing tentang pengertian…

3 hari ago

Penjelasan dan Tutorial Regresi Linear Berganda

Penjelasan dan Tutorial Regresi Linear Berganda Dalam kesempatan ini, saya akan coba menjelaskan tentang Regresi Linear Berganda serta tutorial regresi…

2 bulan ago

Cara Hitung Rumus Slovin Besar Sampel

Cara Perhitungan Rumus Slovin Besar Sampel Minimal Pengertian Rumus Slovin Rumus Slovin adalah sebuah rumus atau formula untuk menghitung jumlah…

2 bulan ago

F Tabel Lengkap Beserta Cara Mencari dan Membacanya

F Tabel Lengkap Selamat pagi, siang atau malam wahai semua pengunjung dan pecinta statistikian.com. Dalam kesempatan ini saya akan menjelaskan…

3 bulan ago

Tutorial Uji Regresi Ordinal dengan SPSS

Tutorial Analisis Regresi Ordinal dengan SPSS Berikut dalam artikel kali ini akan kita bahas bagaimana cara melakukan uji regresi ordinal…

6 bulan ago

Contoh Penelitian Bisnis dengan Regresi Linear

Contoh Penelitian Bisnis Menggunakan Uji Regresi Linear Berganda Contoh penelitian bisnis ini adalah salah satu contoh penelitian yang biasa digunakan…

8 bulan ago