Uji Normalitas

Pengertian Uji Normalitas

Uji Normalitas adalah sebuah uji yang dilakukan dengan tujuan untuk menilai sebaran data pada sebuah kelompok data atau variabel, apakah sebaran data tersebut berdistribusi normal ataukah tidak.

Uji Normalitas berguna untuk menentukan data yang telah dikumpulkan berdistribusi normal atau diambil dari populasi normal. Metode klasik dalam pengujian normalitas suatu data tidak begitu rumit. Berdasarkan pengalaman empiris beberapa pakar statistik, data yang banyaknya lebih dari 30 angka (n > 30), maka sudah dapat diasumsikan berdistribusi normal. Biasa dikatakan sebagai sampel besar.

Namun untuk memberikan kepastian, data yang dimiliki berdistribusi normal atau tidak, sebaiknya digunakan uji normalitas. Karena belum tentu data yang lebih dari 30 bisa dipastikan berdistribusi normal, demikian sebaliknya data yang banyaknya kurang dari 30 belum tentu tidak berdistribusi normal, untuk itu perlu suatu pembuktian. uji statistik yang dapat digunakan diantaranya adalah: Uji Chi-Square, Kolmogorov Smirnov, Lilliefors, Shapiro Wilk, Jarque Bera.

Metode Chi Square Dalam Uji Normalitas

(Uji Goodness Of Fit Distribusi Normal)

Metode Chi-Square atau X2 untuk Uji Goodness of fit Distribusi Normal menggunakan pendekatan penjumlahan penyimpangan data observasi tiap kelas dengan nilai yang diharapkan. Uji Chi-square seringkali digunakan oleh para peneliti sebagai alat uji normalitas.

Rumus Uji Normalitas dengan Chi-Square
Rumus Uji Normalitas dengan Chi-Square

Keterangan :
X2 = Nilai X2
Oi = Nilai observasi
Ei = Nilai expected / harapan, luasan interval kelas berdasarkan tabel normal dikalikan N (total frekuensi) (pi x N)
N = Banyaknya angka pada data (total frekuensi)

Komponen penyusun rumus tersebut di atas didapatkan berdasarkan pada hasil transformasi data distribusi frekuensi yang akan diuji normalitasnya, sebagai berikut:

Tabel Pembantu Uji Normalitas
Tabel Pembantu Uji Normalitas

Keterangan :
Xi = Batas tidak nyata interval kelas
Z = Transformasi dari angka batas interval kelas ke notasi pada distribusi normal
pi = Luas proporsi kurva normal tiap interval kelas berdasar tabel normal
Oi = Nilai observasi
Ei = Nilai expected / harapan, luasan interval kelas berdasarkan tabel normal dikalikan N (total frekuensi) (pi x N)

Syarat Uji Chi-Square dalam Uji Normalitas

Persyaratan Metode Chi Square (Uji Goodness of fit Distribusi Normal)
a. Data tersusun berkelompok atau dikelompokkan dalam tabel distribusi frekuensi.
b. Cocok untuk data dengan banyaknya angka besar ( n > 30 )
c. Setiap sel harus terisi, yang kurang dari 5 digabungkan.

Signifikansi:
Signifikansi uji, nilai X2 hitung dibandingkan dengan X2 tabel (Chi-Square).
Jika nilai X2 hitung < nilai X2 tabel, maka Ho diterima ; Ha ditolak.
Jika nilai X2 hitung > nilai X2 tabel, maka maka Ho ditolak ; Ha diterima.

Contoh Uji Chi-Square dalam Analisis Normalitas

Contoh:
Diambil Tinggi Badan Mahasiswa Di Suatu Perguruan Tinggi Tahun 2010

Selidikilah dengan α = 5%, apakah data tersebut di atas berdistribusi normal ? (Mean = 157.8; Standar deviasi = 8.09)
Penyelesaian :
1. Hipotesis :

  • Ho : Populasi tinggi badan mahasiswa berdistribusi normal
  • H1 : Populasi tinggi badan mahasiswa tidak berdistribusi normal

2. Nilai α

  • Nilai α = level signifikansi = 5% = 0,05

3. Rumus Statistik penguji

Luasan pi dihitung dari batasan proporsi hasil tranformasi Z yang dikonfirmasikan dengan tabel distribusi normal atau tabel z.

4. Derajat Bebas

  • Df = ( k – 3 ) = ( 5 – 3 ) = 2

5. Nilai tabel

  • Nilai tabel X2 ; α = 0,05 ; df = 2 ; = 5,991. Baca selengkapnya tentang Tabel Chi-Square.

6. Daerah penolakan

  • Menggunakan gambar

  • Menggunakan rumus:   |0,427 | < |5,991| ; Keputusan hipotesis: berarti Ho diterima, Ha ditolak

7. Kesimpulan:  Populasi tinggi badan mahasiswa berdistribusi normal α = 0,05.

Untuk Metode yang lain, yaitu Liliefors, Kolmogorov Smirnov dan Saphiro Wilk akan dibahas dalam artikel lainnya.

Untuk Pengujian Normalitas dalam SPSS, Baca: Normalitas Pada SPSS.Baca Juga Tentang: Uji Homogenitas. Demikian telah kami jelaskan tentang Uji Normalitas dan Cara perhitungannya dengan Uji Chi-Square. Dan jangan lupa, masih banyak lagi jenis uji normalitas yang kami bahas dalam website kami, silahkan anda baca dan pelajari semuanya.

Pertanyaan yang sering diajukan seputar normalitas:

Apa yang dimaksud dengan Uji Normalitas

Yaitu sebuah uji untuk menilai sebaran data pada variabel atau kelompok data, apakah berdistribusi normal ataukah tidak. Jika data berdistribusi normal dapat diasumsikan bahwa data diambil secara acak dari populasi normal.

Data dikatakan berdistribusi normal apabila tidak mempunyai perbedaan yang signifikan atau yang baku dibandingkan dengan normal baku. Jika menggunakan uji statistik, misalnya menggunakan uji kolmogorov smirnov, variabel dikatakan berdistribusi normal jika nilai signifikansinya lebih dari atau sama dengan 0,05. Sebaliknya jika signifikansi kurang dari 0,05 maka variabel atau data dinyatakan tidak berdistribusi normal.

Apa saja uji normalitas?

Secara umum dinyatakan bahwa normalitas dapat dinilai dengan berbagai cara yang jika dikelompokkan pada dasarnya ada dalam 2 kelompok, yaitu analisis secara visual dan analisis secara statistik.

Analisis secara visual antara lain menggunakan grafik normal PP, Normal QQ, Histogram, Stem Leaf, Box Plot, dll. Sedangkan secara statistik dapat diuji menggunakan uji Kolmogorov Smirnov, Shapiro Wilk, Shapiro Francia, Andersen Darling, Ryan Joiner, Skewness Kurtosis Test, Jarque Bera dan masih banyak jenis uji statistik lainnya untuk menilai normalitas.

Apa penyebab data tidak berdistribusi normal?

Penyebab data tidak berdistribusi normal adalah terutama adanya data extreme atau data pencilan yang biasa disebut dengan istilah outlier. Dengan adanya outlier tersebut, maka sebaran data bisa menjadi condong ke kiri atau condong ke kanan. Dimana jika sebaran data ini kita nilai secara visual misalnya menggunakan histogram, maka seharusnya data yang berdistribusi normal akan membentuk sebaran seperti lonceng menghadap ke atas.

Jika anda menghadapi situasi dimana data tidak berdistribusi normal, maka langkah yang dapat anda lakukan adalah dengan menilai apakah data tersebut ada outlier atau pencilan data. Jika memang ada, maka selanjutnya anda bisa melakukan Trimming yaitu mengeliminasi data yang menjadi penyebab terjadinya outlier.

Cara lain yang dapat dilakukan misalnya transformasi data. Namun cara tersebut haruslah disesuaikan dengan tujuan mengapa dibutuhkan data yang berdistribusi normal. Tentunya bahasan ini akan dibahas pada artikel-artikel lainnya dalam website ini.

Demikian sekilas tentang penjelasan kami mengenai uji normalitas data.

By Anwar Hidayat

50 komentar untuk “Uji Normalitas dan Metode Perhitungan (Penjelasan Lengkap)”

  1. Uji normalitas tergantung uji yang digunakan, karena uji normalitas berbed tiap uji statistik, misal pada regresi linear, normalitas pada resiudalnya, sedangkan pada independen t test, uji normalitas pada var terikat tiap kelompok/kategori

  2. mas aku mau nanya….. aku punya penelitian.. setiap sampling aku ngerjain duplo ( atau 2 replikasi) trus aku sampling 5 kali…. jadi aku punya 10 sampel…. nah setiap sampel aku ukur dengan 2 metode analisis yang berbeda. Jadi tiap sampel pake 2 metode…..
    yang mau aku tanyakan uji normalitasnya aku bandingkan dari masing – masing metode…. atau aku bandingin antar metodenya…. makasih ya

  3. saya ingin tanya, bila saya ingin melakukan uji normalitas terhadap 2 kelompok percobaan, harus dilakukan uji normalitas per kelompoknya atau dapat digabung?

  4. Uji normalitas adalah prasyarat atau disebut sebagai asumsi dari uji statistik lainnya yang lebih utama, biasanya untuk menjawab hipotesis dari statistik inferensial. Jadi segala sesuatunya harus diidentifikasi dulu uji hipotesanya yang menyebab prasyarat normalitas, karena konsekuensi dari ketidak normalannya berbeda-beda.

  5. mas saya mau tanya, kalau data yang saya punya sudah uji normalitas dengan spss tapi hasilnya distribusi tidak normal, apakah ada uji lain yang bisa digunakan sebagai uji lanjutan ? terimakasih

  6. jika didpt sig pengujiannya 0,036,,, kesimpulannya berdistribusi normal atau tidak.. karena saya masih bingung memakai alpa atau setengah alpa.. mohon jwbnnya,, terima kasih

  7. Bila anda melakukan uji non parametris. Pada uji parametris, maka hanya uji independen t test dan paired t test saja yang memperbolehkan normalitas dilanggar, tapi tidak dianjurkan. Pada uji regresi, jika anda menggunakan metode robust, maka diperbolehkan melanggar normalitas residual.

  8. mau tanya dong mas..>> kapan yah uji asumsi klasik itu boleh dilanggar dan kenapa yaa alasannya kita melakukan uji normalitas?mohon d balas yaa buat skripsi soalnya..makasih

  9. Tidak cocok, sebab hipotesis anda harusnya uji beda 2 sampel berpasangan. Sedangkan uji normalitas adalah uji syarat untuk pengujian hipotesis dengan menggunakan uji parametris, misalkan uji regresi, anova, t test dan uji parametris lainnya.

  10. nah ini dia yang sedang sy cari, belajar ginian emang bikin pusing.. tp tks ya om bisa buat referensi mksih bnyak y artikelnya

  11. Sepertinya anda akan melakukan uji paired t test, maka diperlukan uji normalitas, namun uji normalitas dilakukan pada selisih antara pre dan post, bukan pada data pre dan post nya. Jika asumsi normalitas tidak terpenuhi, maka gunakan uji non parametris sebagai alternatif dari paired t test, yaitu uji wilcoxon signed rank test. Trims.

  12. Mas saya mau nanya….. penelitian sya pre dn post test tetapi hanya kelompok eksperimen dan tdk ada kelompok kontrol… pre test kemudian perlakuan dan post test…. apakah ttap menggunakan uji normalitas…mohon jawabanya….bingung

  13. Robust adalah kebal terhadap suatu kendala asumsi. Bisa jadi kebal terhadap heteroskedastisitas, normalitas atau autokorelasi. Sedangkan RE menggunakan prinsip maximum likelihood, bukan ordinary least square. Sehingga asumsi heteroskedastisitas dan normalitas dapat diabaikan. Lebih jelasnya pelajari: Regresi Data Panel.

  14. ka mau tanya, jika uji Chow test menghasilkan FE, Uji LM menghasilkan RE, dan UjiHausman Menghasilkan RE, apakah perlu saya menguji dengan menggunakan Robust ?

    mohon balasanya
    terima kasih

  15. Mas mau tanya, kalau data yang dimiliki itu adalah pre dan pos untuk 2 variabel
    Maka untuk uji normalitas yang dimasukkan itu hasil pre dan postesnya atau cukup selisihnya?

  16. mohon maaf saya mau tanya….saya punya penelitian tetapi tidak normal dengan nilai signifikan 0,05. dan salah satu variabel saya ada variabel dummy. apakah juga harus dioutlier atau transformasi ? dan sebaiknya bagaimana menjelaskan nya ?

  17. jika judul penelitian saya “pengaruh penerapan pendekatan kontekstual terhadap kemampuan berpikir kritis matematika siswa smp”.
    rumusan masalah:
    1. apakah terdapat pengaruh penerapan pendekatan kontekstual terhadap kemampuan berpikir kritis?
    2. apakah kemampuan berpikir kritis siswa yang diajar dengan pendekatan konekstual lebih tinggi dari siswa yang diajar dengan pembelajaran konvensional?
    dari rumusan masalah, uji apa yang harus saya gunakan pak?

  18. Mukarromah Bakri

    Mas, mau tanya. Saya sedang melakukan penelitian hipotesis asosiatif dengan populasi dibawah 30. Uji normalitas apa yg cocok untuk penelitian saya?

    1. Shapiro wilk atau shapiro francia jika anda punya aplikasi STATA. Jika hanya punya SPSS, maka gunakan shapiro wilk. Jika punya aplikasi Eviews, gunakan jarque bera. Jika mau hitung manual, saya rekomendasikan uji shapiro wilk.

    1. Tergantung pada analisis hipotesisnya. Misal uji regresi linear, maka uji normalitas pada residualnya. Jika uji independen t test, maka uji normalitas pada variabel terikat per kelompok. Jika uji paired t test, uji normalitas pada selisih antara pre dan post. Dan masih banyak lagi macamnya.

  19. jannatul husna

    maaf mas, saya mau tanya. jika data yang digunakan kurang dari 30 bolehkah menguji normalitas menggunakan uji chi square? terima kasih

  20. mas mau tanya, penelitian saya menggunakan independent simple t test, dan datanya ada 200, apa harus uji normalitas?

  21. Mau nanya mas: saya kan pake metode regresi berganda, kalo uji normalitasnya tidak tepenuhi, terus di transformasikan, lalu sudah terpenuhi uji normalitasnya. Nah untuk uji selanjutnya memakai data yg di transformasi itu atau bagaimana?

  22. Mas mau nanya, kalau datanya dr kuesioner, kan itu jenis datanya ordinal ya mas..itu mesti di uji normalitas nya, atau uji normalitas hanya untuk data yg berskala rasio dan interval?

  23. anaknyamakbapak

    Kak, kalau saya sudah mengoutlier data dan transformasi tapi data Masi tidak normal itu bagaimana ya kak penyelesaiannya?? Terimakasih

Tinggalkan Komentar

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Scroll to Top
Jasa Olah dan Analisis Statistik Oleh Statistikian Tahun 2024